10 research outputs found

    Evaluation of probabilistic photometric redshift estimation approaches for The Rubin Observatory Legacy Survey of Space and Time (LSST)

    Get PDF
    Many scientific investigations of photometric galaxy surveys require redshift estimates, whose uncertainty properties are best encapsulated by photometric redshift (photo-z) posterior probability density functions (PDFs). A plethora of photo-z PDF estimation methodologies abound, producing discrepant results with no consensus on a preferred approach. We present the results of a comprehensive experiment comparing 12 photo-z algorithms applied to mock data produced for The Rubin Observatory Legacy Survey of Space and Time Dark Energy Science Collaboration. By supplying perfect prior information, in the form of the complete template library and a representative training set as inputs to each code, we demonstrate the impact of the assumptions underlying each technique on the output photo-z PDFs. In the absence of a notion of true, unbiased photo-z PDFs, we evaluate and interpret multiple metrics of the ensemble properties of the derived photo-z PDFs as well as traditional reductions to photo-z point estimates. We report systematic biases and overall over/underbreadth of the photo-z PDFs of many popular codes, which may indicate avenues for improvement in the algorithms or implementations. Furthermore, we raise attention to the limitations of established metrics for assessing photo-z PDF accuracy; though we identify the conditional density estimate loss as a promising metric of photo-z PDF performance in the case where true redshifts are available but true photo-z PDFs are not, we emphasize the need for science-specific performance metrics

    GPz: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts

    No full text
    The next generation of cosmology experiments will be required to use photometric redshifts rather than spectroscopic redshifts. Obtaining accurate and well-characterized photometric redshift distributions is therefore critical for Euclid, the Large Synoptic Survey Telescope and the Square Kilometre Array. However, determining accurate variance predictions alongside single point estimates is crucial, as they can be used to optimize the sample of galaxies for the specific experiment (e.g. weak lensing, baryon acoustic oscillations, supernovae), trading off between completeness and reliability in the galaxy sample. The various sources of uncertainty in measurements of the photometry and redshifts put a lower bound on the accuracy that any model can hope to achieve. The intrinsic uncertainty associated with estimates is often non-uniform and input-dependent, commonly known in statistics as heteroscedastic noise. However, existing approaches are susceptible to outliers and do not take into account variance induced by non-uniform data density and in most cases require manual tuning of many parameters. In this paper, we present a Bayesian machine learning approach that jointly optimizes the model with respect to both the predictive mean and variance we refer to as Gaussian processes for photometric redshifts (GPZ). The predictive variance of the model takes into account both the variance due to data density and photometric noise. Using the Sloan Digital Sky Survey (SDSS) DR12 data, we show that our approach substantially outperforms other machine learning methods for photo-z estimation and their associated variance, such as TPZ and ANNZ2. We provide a MATLAB and PYTHON implementations that are available to download at https://github.com/OxfordML/GPz

    From thinking skills to thinking classrooms A review and evaluation of approaches for developing pupils' thinking

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:7761.34110(115) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    A Sparse Gaussian Process Framework for Photometric Redshift Estimation

    No full text
    Accurate photometric redshifts are a lynchpin for many future experiments to pin down the cosmological model and for studies of galaxy evolution. In this study, a novel sparse regression framework for photometric redshift estimation is presented. Simulated and real data from SDSS DR12 were used to train and test the proposed models. We show that approaches which include careful data preparation and model design offer a significant improvement in comparison with several competing machine learning algorithms. Standard implementations of most regression algorithms have as the objective the minimization of the sum of squared errors. For redshift inference, however, this induces a bias in the posterior mean of the output distribution, which can be problematic. In this paper we directly target minimizing Δz=(zszp)/(1+zs)\Delta z = (z_\textrm{s} - z_\textrm{p})/(1+z_\textrm{s}) and address the bias problem via a distribution-based weighting scheme, incorporated as part of the optimization objective. The results are compared with other machine learning algorithms in the field such as Artificial Neural Networks (ANN), Gaussian Processes (GPs) and sparse GPs. The proposed framework reaches a mean absolute Δz=0.0026(1+zs)\Delta z = 0.0026(1+z_\textrm{s}), over the redshift range of 0zs20 \le z_\textrm{s} \le 2 on the simulated data, and Δz=0.0178(1+zs)\Delta z = 0.0178(1+z_\textrm{s}) over the entire redshift range on the SDSS DR12 survey, outperforming the standard ANNz used in the literature. We also investigate how the relative size of the training set affects the photometric redshift accuracy. We find that a training set of \textgreater 30 per cent of total sample size, provides little additional constraint on the photometric redshifts, and note that our GP formalism strongly outperforms ANNz in the sparse data regime for the simulated data set

    A Sparse Gaussian Process Framework for Photometric Redshift Estimation

    No full text
    Accurate photometric redshifts are a lynchpin for many future experiments to pin down the cosmological model and for studies of galaxy evolution. In this study, a novel sparse regression framework for photometric redshift estimation is presented. Simulated and real data from SDSS DR12 were used to train and test the proposed models. We show that approaches which include careful data preparation and model design offer a significant improvement in comparison with several competing machine learning algorithms. Standard implementations of most regression algorithms have as the objective the minimization of the sum of squared errors. For redshift inference, however, this induces a bias in the posterior mean of the output distribution, which can be problematic. In this paper we directly target minimizing Δz=(zszp)/(1+zs)\Delta z = (z_\textrm{s} - z_\textrm{p})/(1+z_\textrm{s}) and address the bias problem via a distribution-based weighting scheme, incorporated as part of the optimization objective. The results are compared with other machine learning algorithms in the field such as Artificial Neural Networks (ANN), Gaussian Processes (GPs) and sparse GPs. The proposed framework reaches a mean absolute Δz=0.0026(1+zs)\Delta z = 0.0026(1+z_\textrm{s}), over the redshift range of 0zs20 \le z_\textrm{s} \le 2 on the simulated data, and Δz=0.0178(1+zs)\Delta z = 0.0178(1+z_\textrm{s}) over the entire redshift range on the SDSS DR12 survey, outperforming the standard ANNz used in the literature. We also investigate how the relative size of the training set affects the photometric redshift accuracy. We find that a training set of \textgreater 30 per cent of total sample size, provides little additional constraint on the photometric redshifts, and note that our GP formalism strongly outperforms ANNz in the sparse data regime for the simulated data set

    Evaluation of probabilistic photometric redshift estimation approaches for The Rubin Observatory Legacy Survey of Space and Time (LSST)

    No full text
    Many scientific investigations of photometric galaxy surveys require redshift estimates, whose uncertainty properties are best encapsulated by photometric redshift (photo-z) posterior probability density functions (PDFs). A plethora of photo-z PDF estimation methodologies abound, producing discrepant results with no consensus on a preferred approach. We present the results of a comprehensive experiment comparing 12 photo-z algorithms applied to mock data produced for The Rubin Observatory Legacy Survey of Space and Time Dark Energy Science Collaboration. By supplying perfect prior information, in the form of the complete template library and a representative training set as inputs to each code, we demonstrate the impact of the assumptions underlying each technique on the output photo-z PDFs. In the absence of a notion of true, unbiased photo-z PDFs, we evaluate and interpret multiple metrics of the ensemble properties of the derived photo-z PDFs as well as traditional reductions to photo-z point estimates. We report systematic biases and overall over/underbreadth of the photo-z PDFs of many popular codes, which may indicate avenues for improvement in the algorithms or implementations. Furthermore, we raise attention to the limitations of established metrics for assessing photo-z PDF accuracy; though we identify the conditional density estimate loss as a promising metric of photo-z PDF performance in the case where true redshifts are available but true photo-z PDFs are not, we emphasize the need for science-specific performance metrics
    corecore